Washington University

Olin School of Business
Finance 524
Prof. Guofu Zhou
Options and Futures A
Spring, 2001

Some Useful Formulas

1. Forward Pricing and Value:

$$
F_{t}=S_{t} e^{r(T-t)}=S_{t}(1+R) ; \quad V_{t}=\left(F_{t}-F_{0}\right) e^{-r(T-t)}, \quad \text { (long/buy position) }
$$

where r and R are the continuous and simple interest rates, respectively over time $[t, T]$. In general,

$$
F_{t}=\left(S_{t}+C-Y\right) e^{r(T-t)}=\left(S_{t}+C-Y\right)(1+R)
$$

where C is the PV of cost of carry and Y the value of convenience yield. For stocks or stock indices, $F_{t}=\left(S_{t}-D\right) e^{r(T-t)}=S_{t} e^{(r-d)(T-t)}$, where D is the PV of dividends and d the dividend yield rate.

2. Optimal Hedge Ratio:

$$
h=-\rho_{S F} \frac{\sigma_{S}}{\sigma_{F}}=-\frac{\sigma_{S F}}{\sigma_{F}^{2}}=-\alpha_{1}=-\beta,
$$

where σ_{S} and σ_{F} are the stds, $\rho_{S F}$ and $\sigma_{S F}$ are the corr. and cov.; and β are slopes of

$$
\text { price regression : } \quad \Delta_{S, t}=\alpha_{0}+\alpha_{1} \Delta_{F, t}+\epsilon_{t}, \quad t=1, \ldots, T,
$$

$$
\text { return regression : } \quad \tilde{R}_{p t}-r=\alpha+\beta\left(\tilde{R}_{\mathrm{S} \& \mathrm{P} 500, \mathrm{t}}-r\right)+\tilde{\epsilon}_{t}, \quad t=1, \ldots, T .
$$

R^{2} assesses the effectiveness of hedging; $N_{F}=-h N_{S}$ or $h N_{S} \times P / F=h \times$ value of port/futures price (N_{F} should be divided by contract size in practice, and be reduced if there is natural hedge).
3. Forward Rate and Yields:

$$
\left(1+R_{2}\right)^{2}=\left(1+R_{1}\right)\left(1+f_{1}\right) ; \quad \mathrm{PV}=\frac{C}{1+y}+\frac{C}{(1+y)^{2}}+\cdots+\frac{C}{(1+y)^{T}}+\frac{F}{(1+y)^{T}}
$$

4. Duration and Convexity:

$$
\frac{d B}{B} \approx-D_{m} \times d y+\text { Convexity } \times(d y)^{2}
$$

i.e., $\%$ change of a bond's value is approximately the modified duration times yield change (1st-order accuracy), and $-D_{m} \times d y$ plus Convexity times yield change squared (2nd-order accuracy), where

$$
D_{m}=\frac{D}{1+y}, \quad D=\left[\frac{1 \times C}{1+y}+\frac{2 \times C}{(1+y)^{2}}+\cdots+\frac{n \times C}{(1+y)^{n}}+\frac{n \times F}{(1+y)^{n}}\right] / B
$$

5. Hedging Bonds by Duration :

$$
h=\frac{P\left(D^{*}-D_{P}\right)}{D_{F} F}, \quad\left(D^{*} \text { is the desired duration }\right)
$$

6. Currency Forwards Pricing :

$$
F_{t}=S_{t} e^{\left(r_{d}-r_{f}\right)(T-t)}=S_{t} \frac{1+R_{d}}{1+R_{f}} ; \quad E\left(S_{T}\right)=F_{t} \approx S_{t} \frac{1+I_{d}}{1+I_{f}}
$$

where r_{d} and r_{f} are the domestic and foreign risk-free interest rates (interest rate parity and PPP).
7. Put-Call Parity:

$$
S+P=C+\operatorname{PV}(X), \quad \operatorname{PV}(X)=X e^{-r T}=X /(1+R)
$$

8. Binomial Model:

$$
\begin{array}{cl}
S_{u}=(1+u) S, \quad S_{d}=(1+d) S ; & p \times(1+u) S+(1-p) \times(1+d) S=(1+r) S \\
p=\frac{r-d}{u-d} ; \quad C=\frac{p C_{u}+(1-p) C_{d}}{1+r} ; \quad \Delta=\frac{C_{u}-C_{d}}{S(u-d)}, \quad B=\frac{(1+u) C_{d}-(1+d) C_{u}}{(u-d)(1+r)}
\end{array}
$$

9. Black-Scholes Formula:

$$
\begin{gathered}
C=S N\left(d_{1}\right)-X e^{-r T} N\left(d_{2}\right), \quad \text { Long Call = Long Underlying Asset }+ \text { Borrowing (RePort); } \\
P=X e^{-r T} N\left(-d_{2}\right)-S N\left(-d_{1}\right) ; \quad d_{1}=\left[\ln (S / X)+\left(r+\sigma^{2} / 2\right) T\right] / \sqrt{\sigma^{2} T}, \quad d_{2}=d_{1}-\sqrt{\sigma^{2} T}
\end{gathered}
$$

