Washington University

Olin School of Business
Finance 524B
Prof. Guofu Zhou
Derivatives
Spring, 2001

Some Useful Formulas

1. Put-Call Parity:

$$
\begin{gathered}
S+p=c+\mathrm{PV}(X), \quad S e^{-d(T-t)}+p=c+\mathrm{PV}(X), \quad S+p=c+D+\mathrm{PV}(X) \\
S-X \leq C-P \leq S e^{(b-r) T}-X e^{-r T},(b \geq r) ; \quad S e^{(b-r) T}-X \leq C-P \leq S-X e^{-r T},(b<r)
\end{gathered}
$$

2. Black-Scholes Formula:

$$
\begin{gathered}
c=S e^{(b-r) T} N\left(d_{1}\right)-X e^{-r T} N\left(d_{2}\right), \quad p=X e^{-r T} N\left(-d_{2}\right)-S e^{(b-r) T} N\left(-d_{1}\right) \\
d_{1}=\left[\ln (S / X)+\left(b+\sigma^{2} / 2\right) T\right] / \sqrt{\sigma^{2} T}, \quad d_{2}=d_{1}-\sqrt{\sigma^{2} T}
\end{gathered}
$$

(Note: cost of carry $b=r-d$ for stock and stock index options; $r_{d}-r_{f}$ for currency options; and 0 for futures options. The European call formula applies also to American call options on stocks that pay no or discrete dividends if S is set as the stock price subtracted out the PV of the dividends.)

3. Comparative Statics:

$$
\begin{aligned}
\Delta & =\frac{\partial C}{\partial S}=e^{(b-r) T} N\left(d_{1}\right)>0, \eta=\Delta \frac{S}{C}=e^{(b-r) T} N\left(d_{1}\right) \frac{S}{C}>1, \gamma=\frac{\partial \Delta}{\partial S}=\frac{n\left(d_{1}\right) e^{(b-r) T}}{S \sigma \sqrt{T}}>0 \\
\text { Vega } & =\lambda=\kappa=\frac{\partial C}{\partial \sigma}=S \sqrt{T} e^{(b-r) T} n\left(d_{1}\right)>0, \rho=\frac{\partial C}{\partial r}=T X e^{-r T} N\left(d_{2}\right)>0, \theta=\frac{\partial C}{\partial T}>0 \text { (no-div) }
\end{aligned}
$$

4. Binomial Model:

$$
\begin{gathered}
p \times(1+u) S+(1-p) \times(1+d) S=(1+r) S, \quad \text { or } \quad p=\frac{r-d}{u-d} ; \quad c=\frac{p c_{u}+(1-p) c_{d}}{1+r} \\
C_{i}=\max \left[S_{i}-X, \frac{p C_{i u}+(1-p) C_{i d}}{1+r}\right], \quad P_{i}=\max \left[X-S_{i}, \frac{p P_{i u}+(1-p) P_{i d}}{1+r}\right]
\end{gathered}
$$

a) To transfer a continuous-time model with σ, r and T into an n-period binomial model, set:

$$
u=e^{\sigma \sqrt{\Delta T}}-1, \quad d=e^{-\sigma \sqrt{\Delta T}}-1, \quad r^{*}=e^{r \Delta T}-1, \quad \Delta T=\frac{T}{n}, \quad p=\frac{r^{*}-d}{u-d}
$$

b) Corporate (ex-coupon) bond values:

$$
B_{\mathrm{node}}=\min \left(V_{\mathrm{node}}-c, F\right),(\text { at } T) ; \quad B_{\text {node }}=\frac{p \times B_{\text {node }-\mathrm{u}}+(1-p) \times B_{\text {node }-\mathrm{d}}+c}{1+r}
$$

5. Value at Risk $N(-2.33)=1 \%, N(-1.645)=5 \%, 99 \%$ and $95 \% N$ day VaRs are, respectively,

$$
\mathrm{VaR}=2.33 \times \text { vol of value change, } \mathrm{VaR}=1.645 \times \text { vol of value change }
$$

$$
\sigma_{A B}=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}+2 \rho \sigma_{A} \sigma_{B}}, \quad \sigma_{P}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}+2 \sum_{i=1}^{N} \sum_{j=1}^{i-1} \sigma_{i} \sigma_{j}
$$

6. Replicating Portfolios: (the key insight in option pricing)

$$
\begin{gathered}
\text { Call }=\text { Long Underlying Asset }+ \text { Borrowing } \\
C=\Delta S+B, \quad \Delta=\frac{C_{u}-C_{d}}{S(u-d)}, \quad B=\frac{(1+u) C_{d}-(1+d) C_{u}}{(u-d)(1+r)}
\end{gathered}
$$

(Note: the replicating portfolios are given by the Black-Scholes formula in continuous time.)

7. Ito's Lemma:

$$
\begin{aligned}
d x_{t} & =a(x, t) d t+b(x, t) d B_{t} \\
\Rightarrow \quad d G(x, t) & =\left[G_{t}+a G_{x}+\frac{1}{2} b^{2} G_{x x}\right] d t+b G_{x} d B_{t}
\end{aligned}
$$

