Neil A. Weiss

FORMULAS

NOTATION The following notation is used on this card:

n= sample size $\sigma=$ population stdev $\overline{x}=$ sample mean d= paired difference s= sample stdev $\hat{p}=$ sample proportion $Q_j=j$ th quartile p= population proportion N= population size p= observed frequency p= population mean p= p= sample proportion p= population proportion p= population frequency p= population mean p= sample p= sample p= sample proportion p= sample p= sample proportion p= sample proportion p= sample proportion p= sample proportion p= sample frequency p= sample proportion p= sample pr

CHAPTER 3 Descriptive Measures

• Sample mean: $\overline{x} = \frac{\sum x}{n}$

• Range: Range = Max - Min

• Sample standard deviation:

$$s = \sqrt{\frac{\Sigma(x - \overline{x})^2}{n - 1}}$$
 or $s = \sqrt{\frac{\Sigma x^2 - (\Sigma x)^2/n}{n - 1}}$

• Interquartile range: $IQR = Q_3 - Q_1$

• Lower limit = $Q_1 - 1.5 \cdot IQR$, Upper limit = $Q_3 + 1.5 \cdot IQR$

• Population mean (mean of a variable): $\mu = \frac{\sum x}{N}$

• Population standard deviation (standard deviation of a variable):

$$\sigma = \sqrt{\frac{\Sigma(x-\mu)^2}{N}}$$
 or $\sigma = \sqrt{\frac{\Sigma x^2}{N} - \mu^2}$

• Standardized variable: $z = \frac{x - \mu}{z}$

CHAPTER 4 Probability Concepts

• Probability for equally likely outcomes:

$$P(E) = \frac{f}{N},$$

where f denotes the number of ways event E can occur and N denotes the total number of outcomes possible.

• Special addition rule:

$$P(A \text{ or } B \text{ or } C \text{ or } \cdots) = P(A) + P(B) + P(C) + \cdots$$

 $(A, B, C, \dots \text{mutually exclusive})$

• Complementation rule: P(E) = 1 - P(not E)

• General addition rule: P(A or B) = P(A) + P(B) - P(A & B)

• Conditional probability rule: $P(B \mid A) = \frac{P(A \& B)}{P(A)}$

• General multiplication rule: $P(A \& B) = P(A) \cdot P(B \mid A)$

• Special multiplication rule:

$$P(A \& B \& C \& \cdots) = P(A) \cdot P(B) \cdot P(C) \cdots$$

 $(A, B, C, \dots \text{independent})$

• Rule of total probability:

$$P(B) = \sum_{j=1}^{k} P(A_j) \cdot P(B \mid A_j)$$

 $(A_1, A_2, \ldots, A_k$ mutually exclusive and exhaustive)

• Bayes's rule:

$$P(A_i | B) = \frac{P(A_i) \cdot P(B | A_i)}{\sum_{j=1}^{k} P(A_j) \cdot P(B | A_j)}$$

 $(A_1, A_2, \ldots, A_k$ mutually exclusive and exhaustive)

• Factorial: $k! = k(k-1) \cdots 2 \cdot 1$

• Permutations rule: ${}_{m}P_{r} = \frac{m!}{(m-r)!}$

• Special permutations rule: ${}_{m}P_{m}=m!$

• Combinations rule: ${}_{m}C_{r} = \frac{m!}{r!(m-r)!}$

• Number of possible samples: ${}_{N}C_{n} = \frac{N!}{n!(N-n)!}$

CHAPTER 5 Discrete Random Variables

• Mean of a discrete random variable X: $\mu = \sum x P(X = x)$

• Standard deviation of a discrete random variable *X*:

$$\sigma = \sqrt{\Sigma (x - \mu)^2 P(X = x)}$$
 or $\sigma = \sqrt{\Sigma x^2 P(X = x) - \mu^2}$

• Factorial: $k! = k(k-1) \cdots 2 \cdot 1$

• Binomial coefficient: $\binom{n}{x} = \frac{n!}{x!(n-x)!}$

• Binomial probability formula:

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x},$$

where n denotes the number of trials and p denotes the success probability.

• Mean of a binomial random variable: $\mu = np$

• Standard deviation of a binomial random variable: $\sigma = \sqrt{np(1-p)}$

• Poisson probability formula: $P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$

• Mean of a Poisson random variable: $\mu = \lambda$

• Standard deviation of a Poisson random variable: $\sigma = \sqrt{\lambda}$

CHAPTER 7 The Sampling Distribution of the Sample Mean

• Mean of the variable \overline{x} : $\mu_{\overline{x}} = \mu$

• Standard deviation of the variable \overline{x} : $\sigma_{\overline{x}} = \sigma/\sqrt{n}$

Neil A. Weiss

FORMULAS

CHAPTER 8 Confidence Intervals for One Population Mean

• Standardized version of the variable \overline{x} :

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

• z-interval for μ (σ known, normal population or large sample):

$$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

- Margin of error for the estimate of μ : $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
- Sample size for estimating μ :

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2,$$

rounded up to the nearest whole number.

• Studentized version of the variable \overline{x} :

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

• *t*-interval for μ (σ unknown, normal population or large sample):

$$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

with df = n - 1.

CHAPTER 9 Hypothesis Tests for One Population Mean

• z-test statistic for H_0 : $\mu = \mu_0$ (σ known, normal population or large sample):

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

• *t*-test statistic for H_0 : $\mu = \mu_0$ (σ unknown, normal population or large sample):

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

with df = n - 1.

Wilcoxon signed-rank test statistic for H₀: μ = μ₀ (symmetric population):

W = sum of the positive ranks

CHAPTER 10 Inferences for Two Population Means

• Pooled sample standard deviation:

$$s_{\rm p} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

 Pooled t-test statistic for H₀: μ₁ = μ₂ (independent samples, normal populations or large samples, and equal population standard deviations):

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}}$$

with df = $n_1 + n_2 - 2$.

 Pooled t-interval for μ₁ – μ₂ (independent samples, normal populations or large samples, and equal population standard deviations):

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{(1/n_1) + (1/n_2)}$$

with df = $n_1 + n_2 - 2$.

• Degrees of freedom for nonpooled-*t* procedures:

$$\Delta = \frac{\left[\left(s_1^2/n_1 \right) + \left(s_2^2/n_2 \right) \right]^2}{\frac{\left(s_1^2/n_1 \right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2 \right)^2}{n_2 - 1}},$$

rounded down to the nearest integer.

• Nonpooled *t*-test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples, and normal populations or large samples):

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}$$

with $df = \Delta$.

• Nonpooled *t*-interval for $\mu_1 - \mu_2$ (independent samples, and normal populations or large samples):

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \cdot \sqrt{(s_1^2/n_1) + (s_2^2/n_2)}$$

with $df = \Delta$.

• Mann–Whitney test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples and same-shape populations):

M = sum of the ranks for sample data from Population 1

 Paired t-test statistic for H₀: μ₁ = μ₂ (paired sample, and normal differences or large sample):

$$t = \frac{\overline{d}}{s_d/\sqrt{n}}$$

with df = n - 1.

• Paired *t*-interval for $\mu_1 - \mu_2$ (paired sample, and normal differences or large sample):

$$\overline{d} \pm t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$$

with df = n - 1.

• Paired Wilcoxon signed-rank test statistic for H_0 : $\mu_1 = \mu_2$ (paired sample and symmetric differences):

W = sum of the positive ranks

Neil A. Weiss

FORMULAS

CHAPTER 11 Inferences for Population Standard Deviations

• χ^2 -test statistic for H_0 : $\sigma = \sigma_0$ (normal population):

$$\chi^2 = \frac{n-1}{\sigma_0^2} s^2$$

with df = n - 1.

• χ^2 -interval for σ (normal population):

$$\sqrt{\frac{n-1}{\chi_{\alpha/2}^2}} \cdot s$$
 to $\sqrt{\frac{n-1}{\chi_{1-\alpha/2}^2}} \cdot s$

with df = n - 1.

• F-test statistic for H_0 : $\sigma_1 = \sigma_2$ (independent samples and normal populations):

$$F = s_1^2/s_2^2$$

with df = $(n_1 - 1, n_2 - 1)$.

• F-interval for σ_1/σ_2 (independent samples and normal populations):

$$\frac{1}{\sqrt{F_{\alpha/2}}} \cdot \frac{s_1}{s_2}$$
 to $\frac{1}{\sqrt{F_{1-\alpha/2}}} \cdot \frac{s_1}{s_2}$

with df = $(n_1 - 1, n_2 - 1)$.

CHAPTER 12 Inferences for Population Proportions

• Sample proportion:

$$\hat{p} = \frac{x}{n}$$

where *x* denotes the number of members in the sample that have the specified attribute.

• One-sample *z*-interval for *p*:

$$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$$

(Assumption: both x and n - x are 5 or greater)

• Margin of error for the estimate of p:

$$E = z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$$

• Sample size for estimating *p*:

$$n = 0.25 \left(\frac{z_{\alpha/2}}{E}\right)^2$$
 or $n = \hat{p}_g(1 - \hat{p}_g) \left(\frac{z_{\alpha/2}}{E}\right)^2$

rounded up to the nearest whole number (g = ``educated guess'')

• One-sample z-test statistic for H_0 : $p = p_0$:

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

(Assumption: both np_0 and $n(1 - p_0)$ are 5 or greater)

• Pooled sample proportion: $\hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}$

• Two-sample z-test statistic for H_0 : $p_1 = p_2$:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)}\sqrt{(1/n_1) + (1/n_2)}}$$

(Assumptions: independent samples; $x_1, n_1 - x_1, x_2, n_2 - x_2$ are all 5 or greater)

• Two-sample z-interval for $p_1 - p_2$:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1 - \hat{p}_1)/n_1 + \hat{p}_2(1 - \hat{p}_2)/n_2}$$

(Assumptions: independent samples; x_1 , $n_1 - x_1$, x_2 , $n_2 - x_2$ are all 5 or greater)

• Margin of error for the estimate of $p_1 - p_2$:

$$E = z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2}$$

• Sample size for estimating $p_1 - p_2$:

$$n_1 = n_2 = 0.5 \left(\frac{z_{\alpha/2}}{E}\right)^2$$

or

$$n_1 = n_2 = \left(\hat{p}_{1g}(1 - \hat{p}_{1g}) + \hat{p}_{2g}(1 - \hat{p}_{2g})\right) \left(\frac{z_{\alpha/2}}{E}\right)^2$$

rounded up to the nearest whole number (g = "educated guess")

CHAPTER 13 Chi-Square Procedures

• Expected frequencies for a chi-square goodness-of-fit test:

$$E = np$$

• Test statistic for a chi-square goodness-of-fit test:

$$\chi^2 = \Sigma (O - E)^2 / E$$

with df = k - 1, where k is the number of possible values for the variable under consideration.

• Expected frequencies for a chi-square independence test:

$$E = \frac{R \cdot C}{n}$$

where R = row total and C = column total.

• Test statistic for a chi-square independence test:

$$\chi^2 = \Sigma (O - E)^2 / E$$

with df = (r - 1)(c - 1), where r and c are the number of possible values for the two variables under consideration.

CHAPTER 14 Descriptive Methods in Regression and Correlation

• S_{xx} , S_{xy} , and S_{yy} :

$$S_{xx} = \Sigma (x - \overline{x})^2 = \Sigma x^2 - (\Sigma x)^2 / n$$

$$S_{xy} = \Sigma (x - \overline{x})(y - \overline{y}) = \Sigma xy - (\Sigma x)(\Sigma y) / n$$

$$S_{yy} = \Sigma (y - \overline{y})^2 = \Sigma y^2 - (\Sigma y)^2 / n$$

• Regression equation: $\hat{y} = b_0 + b_1 x$, where

$$b_1 = \frac{S_{xy}}{S_{xy}}$$
 and $b_0 = \frac{1}{n} (\Sigma y - b_1 \Sigma x) = \overline{y} - b_1 \overline{x}$

Neil A. Weiss

FORMULAS

- Total sum of squares: $SST = \Sigma (y \overline{y})^2 = S_{yy}$
- Regression sum of squares: $SSR = \Sigma (\hat{y} \overline{y})^2 = S_{xy}^2 / S_{xx}$
- Error sum of squares: $SSE = \sum (y \hat{y})^2 = S_{yy} S_{xy}^2 / S_{xx}$
- Regression identity: SST = SSR + SSE
- Coefficient of determination: $r^2 = \frac{SSR}{SST}$
- Linear correlation coefficient:

$$r = \frac{\frac{1}{n-1} \sum (x - \overline{x})(y - \overline{y})}{s_x s_y} \qquad \text{or} \qquad r = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}$$

CHAPTER 15 Inferential Methods in Regression and Correlation

- Population regression equation: $y = \beta_0 + \beta_1 x$
- Standard error of the estimate: $s_e = \sqrt{\frac{SSE}{n-2}}$
- Test statistic for H_0 : $\beta_1 = 0$:

$$t = \frac{b_1}{s_e/\sqrt{S_{xx}}}$$

with df = n - 2.

• Confidence interval for β_1 :

$$b_1 \pm t_{\alpha/2} \cdot \frac{s_e}{\sqrt{S_{cor}}}$$

with df = n - 2.

 Confidence interval for the conditional mean of the response variable corresponding to x_p:

$$\hat{y}_p \pm t_{\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_p - \Sigma x/n)^2}{S_{xx}}}$$

with df = n - 2.

 Prediction interval for an observed value of the response variable corresponding to x_p:

$$\hat{y}_p \pm t_{\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_p - \Sigma x/n)^2}{S_{xx}}}$$

with df = n - 2.

• Test statistic for H_0 : $\rho = 0$:

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

with df = n - 2.

• Test statistic for a correlation test for normality:

$$R_p = \frac{\Sigma x w}{\sqrt{S_{xx} \Sigma w^2}}$$

where x and w denote observations of the variable and the corresponding normal scores, respectively.

CHAPTER 16 Analysis of Variance (ANOVA)

• Notation in one-way ANOVA:

k = number of populations

n = total number of observations

 \overline{x} = mean of all *n* observations

 $n_i = \text{size of sample from Population } j$

 \overline{x}_i = mean of sample from Population j

 s_i^2 = variance of sample from Population j

 $T_i = \text{sum of sample data from Population } j$

• Defining formulas for sums of squares in one-way ANOVA:

$$SST = \sum (x - \overline{x})^2$$

$$SSTR = \sum n_j (\overline{x}_j - \overline{x})^2$$

$$SSE = \sum (n_j - 1)s_j^2$$

- One-way ANOVA identity: SST = SSTR + SSE
- Computing formulas for sums of squares in one-way ANOVA:

$$SST = \sum x^{2} - (\sum x)^{2}/n$$

$$SSTR = \sum (T_{j}^{2}/n_{j}) - (\sum x)^{2}/n$$

$$SSE = SST - SSTR$$

• Mean squares in one-way ANOVA:

$$MSTR = \frac{SSTR}{k-1}, \qquad MSE = \frac{SSE}{n-k}$$

• Test statistic for one-way ANOVA (independent samples, normal populations, and equal population standard deviations):

$$F = \frac{MSTR}{MSE}$$

with df = (k - 1, n - k).

• Confidence interval for $\mu_i - \mu_j$ in the Tukey multiple-comparison method (independent samples, normal populations, and equal population standard deviations):

$$(\overline{x}_i - \overline{x}_j) \pm \frac{q_\alpha}{\sqrt{2}} \cdot s\sqrt{(1/n_i) + (1/n_j)},$$

where $s = \sqrt{MSE}$ and q_{α} is obtained for a *q*-curve with parameters k and n - k.

• Test statistic for a Kruskal–Wallis test (independent samples, same-shape populations, all sample sizes 5 or greater):

$$H = \frac{SSTR}{SST/(n-1)}$$
 or $H = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1),$

where *SSTR* and *SST* are computed for the ranks of the data, and R_j denotes the sum of the ranks for the sample data from Population j. H is approximately chi-square with df = k - 1.